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SUMMARY 

Equations of motion and associated boundary conditions are developed for 

the general nonlinear vibratlonal behavior of Chin conical shells. The 

theory Is based upon nonlinear strain-displacement relations deduced for 

a conical shell from those derived by Sanders for thin shells of compound 

curvature. Equations for the bending, buckling, and postbuckling of 

conical shells under arbitrary loads are developed also and are shown to 

reduce to equations based on more simplified theories for both conical 

and circular cylindrical shells and circular flat plates. Various 

solution approaches to the nonlinear conical shell vibration problem are 

examined, and a new numerical method of solution is proposed and 

discussed. 
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FOREWORD 

The work reported herein constitutes a portion of a continuing effort 

being undertaken at Stanford University for the U. S. Army Aviation 

Materiel Laboratories under Contract DAAJ02-68-C-0035 (Task IF162204A17002) 

to establish accurate theoretical prediction capability for the static and 

dynamic behavior of aircraft structural components utilizing both con- 

ventional and unconventional materials.  Predecessor contracts supported 

investigations which led, in part, to the results presented in References 

18, 28, 29, 32, and 33. 
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INTRODUCTION 

All investigations of he free vibrations of conical shells to date have 

used linear theory, mostly based upon Love's first approximation theory 

for thin shells .  Some of the notable earlier studies are those by 
2 _       i        4 5      6 

Strutt , Federhofer", Goldberg , Grigolyuk , Shuman , Saunders, Wlsniewski, 
7 8 

and Paslay , and Garnet . The last-named author modified the theory to 

take into account transverse shear and rotatory inertia effects. 

With the development in the late 1950s of the more sophisticated theory 

for conical shells (developed specifically for buckling problems) by 
9 10 

Seide and Singer , free vibration studies employing this theory were 
11 12 

later carried out by Seide  and Weingarten . These studies were based 

on the liaear strain-displacement relations given by Love's first approxi- 

mation with circumferential displacements in the curvature terms neglected 

and with midsurface inertia terms omitted. Results of these studies 

correlated well with experimental data for vibrating conical shells 

exhibiting a large number of circumferential waves. This was expected, 
13 

since neglect of the midsurface inertias was shown by Reissner  to be 

valid only when a large number of circumferential waves is present. 

14 15 
In two other studies, notably those by Chen  and Weingarten , the 

authors retained the circumferential terms in the curvature expressions 

and also included the previously neglected midsurface inertia terms. 
14 

Chen  used a Lagrange-equation approach in conjunction with the 

Rayleigh-Ritz method for a conical shell with classical simple supports. 

Again, correlation with experimental data was good for higher mode 

numbers, whereas results for a small number of waves correlated poorly. 

Weingarten  used Saunders*  linear shell equations in conjunction with 

a finite-difference scheme introduced by Budlansky and Radkowski  for 

stat^ analysis of shells. The effects of different boundary conditions 

upon the vibrations were assessed, and it was shewn that at low wave 

numbers the boundary conditions have a marked effect upon the frequencies. 

i 



This was also shown in Che earlier work of Seide  for two different 

types of circumferential boundary restraints of simply supported conical 

shells. 

To the best knowledge of the authors, no investigation of the vibrations 

of thin conical shells using nonlinear theory has been carried out to 

date.  It is therefore the purpose of the present work to develop the 

governing equations and the associated boundary conditions for the non- 

linear vibrational behavior of a thin truncated conical shell and to 

examine and discuss various possible approaches for solving these more 

accurate but complex equations. 

Recent investigations of the related problem of nonlinear vibrations of a 

circular cylindrical shell have produced some interesting results. In a 

major work on the subject, in which mldsurface inertia terms are neglected, 
18 19 20 21 22 

Mayers and Wrenn  criticize previous solutions '  '  '  based upon the 

well-known von Karman-Donnell strain-displacement relations. The authors 

carry out a new solution for the classical equations which removes the 

basis for criticism and discloses the existence of a nonperlodic vibration 

behavior, a phenomenon not considered previously.  Solutions for a small 

number of circumferential waves are obtained also using the more accurate 
23 

strain-displacement relations derived by Sanders 

In the present invescigaticn, the governing equations for the nonlinear 

vlbrational behavior of a conical shell are developed using nonlinear 

strain-displacement relations for a conical shell deduced from those 
23 

derived by Sanders  for a shell of arbitrary shape. The total strain 

and kinetic energies of the shell are developed for application In 

Hamilton's varlational principle; the governing differential equations of 

motion and associated boundary conditions are obtained therefrom. As a 

special case, these equations are shown to reduce to the so-called "clas- 

sical" equations of conical shells; namely, those for which the circum- 

ferential terms in the curvature and nonlinear mldsurface strain expres- 

sions are omitted and the cildsurface inertia terms are neglected. 

Althovgh the present work deals with the nonlinear vibrations behavior 



of a conical shell, with little :>dded effort the governing equations 

and associated boundary conditions for the nonlinear behavior of a 

conical shell under arbitrary static and dynamic loads are obtained also. 

These equations are valid for either forced nonlinear vibration problems, 

nonlinear vibration of a prestressed shell,or prebuckltng and postbuckling 

nonlinear behavior of an arbitrarily loaded shell. These extended 

equations are presented in Appendix I. Linearized stability equations 

and boundary conditions using the nonlinear terms developed in this 

study are also presented in Appendix II. 

The equations derived throughout this Investigation are quite general in 

that they reduce (by a set of simple substitutions) to corresponding 

equations for circular cylindrical shells and circular flat plates. These 

equations are presented in Appendixes HI and IV, respectively, and they are 

compared with equations derived in previous studies. 

Lastly, in attempting to solve the nonlinear vibration problen. for a 

conical shell, related work done for the limiting case of the circular 

cylindrical shell is examined. 

The first known investigation of the nonlinear vibrations of a circular 
24 

cylindrical shell was carried out by Reissner  using the classical 

equations (i.e., with midsurface inertia neglected). For linear 

vibrations, Reissner assumed that the radial displacement function may be 

represented as a chessboard pattern. This assumption was validated by 

previous and recent experimental work as reviewed in Reference 18, For 

nonlinear vibrations, Reissner assumed that the nonllnearity has a more 

pronounced effect on the arbitrary time function, which modifies the 

choice of deflected shape, than on the deflected shape itself; conse- 

quently, Reissner also used the chessboard pattern for the nonlinear 
21 

vibration solution. However, as pointed out by Evensen , the use of the 

chessboard pattern leads to a circumferential displacement that is not a 

periodic function of the circumferential coordinate. 

Another solution, which like Reissner's did not satisfy the periodicity 
19 20 

condition, was presented by Chu .  In a later study by Nowinski , the 

periodicity was taken into account; but as a consequence (as noted by 



21 
Evensen ), a nonzero radial displacement occurred at the end of the 

shell, thus violating the assumed geometric boundary conditions of free 

support. All results obtained in the foregoing references were based 
18 

upon periodic motion, except those of Mayers and Urenn . 

The nonlinear behavior experienced by a circular cylindrical shell should 

be experienced as well (perhaps in a slightly modified form) by a conical 

shell. Consequently, in SUGGESTED METHODS OF SOUüTION, extension to a 

conic?! shell of the methods of solution used by the cylindrical shell 

investigators is discussed and an alternative solution based upon a 

modified-Reissner variational principle approach (as introduced by Mayers 
28 29 

et al.  '  ) is also suggested. Finally, a new direct numerical scheme 

for solution is proposed and demonstrated. 



STRAIN-DISPIACEMBNT RELATIONS 

The nonlinear strain-displacement relations employed in this study are 
23 

deduced from those derived by Sanders  for thin shells of arbitrary 

shape.  In the middle surface, the strains are given by 

ht • ^[V2.S2 
+ «M/l1 - RJ + M + ^ (1) 

'U ' 2^^2.1! + 0,1Ü1.S2 " \\h ■ ^.S,1 + 2 *L*t 

«here the rotations $  and $„ are 

*I"R^
+
^
W

'51 

ü2  1 

and the rotation about the normal to the middle surface is 

23 
The general curvature-displacement relations used by Sanders  are given 

by 

^11 ' ^1,1^2 + Vl.l2J 

«22 ^^/l + ^.^ (^ 

«12 = I^^,!^ + *l.l2
ai " Vl.l, ■ *2a2,^ + J (^ - ij ^ 

Equations (1-4) are valid under the following assumptions: 

1. The Kirchoff-Love hypothesis holds; that is, a straight line 

segment that is perpendicular to the middle surface of the 



deformed shell remains perpendicular Co the deformed middle 

surface while undergoing negligible strain relative to its 

original length 

2. The strains and rotations of line elements on the shell mid- 

surface Induced by the deformation remain small in comparison 

to unity, although the components of the displacement are not 

necessarily "small". 

Thus, the total strains in terms of displacements are 

ell = €11 + Z HU 

£22 ' e22 + Z H22 

e12 = e12 + 2Z H12 

By choosing the coordinates for a truncated conical shell as shown in 

Figure I, the general parameters appearing in equations (l)-(4) may be 

written as 

axial coordinate along a generator 

circumferential coordinate 

displacement component in x direction 

displacement component in cp direction 

displacement compcnent in radial direction, positive 

Inward 

h s X 

h = 7 

h = u 

\ = V 

w — w 

so, 

al 
= 1 

^ = xsin a 

I 
Rl 

= 0 

I 
R2 

= 
cos 

xsin 
u 
a 

(5) 



and 

(6) 

11    X 

22   cp 

1 
€12 " 2 7xjp 

Kll " Hx 

H22 " Hq) 

K12 " Kxq) 

The rotations given by equations (2) and (3) consequently reduce to 

1    x 
c 

vcos a + w, 
. $ (7) 

xsin a K'' c 

*n   2\x   'x  xntn a/ 

and the nonlinear strain and curvature relations for a conical shell 

become 

.   !      2 J. ! *? e     =u,    +-w,    +T-9 x x      2      x      2    n c 

v.    - wcos a o        o    ~ O u .      cp . 1        /    Z  .     2    ~ Z ^ .   A _, 
%   =   x+     Lina        +^W7(%+V    C08   a+2v%cosa) 

c 

u, w, 
7     = v,    + —*-r - - + —T

2
—r(w,    + v cos a) 

xcp x     xsin a     x     xsin cr  '<p 



X XX 

y.       - 

w.      + v,     cos a     w, 
cpcp          ?                      X 

2     .  2 ^                  x x    sin    Cr 

3 w,      + 7 v, 
*xcp     4     'x cos a       w,    + 7 v cos Q 

CD      4 u,    cos a 
'<P 

xcp x sin a x    sin a Ax2 sin2 a 

(9) 

Equations (8) and (9) appear as a displacement formulation in terms of a 

tangential v-displacement notation. However, they may also be written 

in terms of a circumferential v-displacement notation to effect a con- 

venient simplification as shown for a circular cylindrical shell by 
18 

Mayers et al.   Throughout this report, the terms which vanish when 

circumferential v-displacements are employed  « traced by a ~ super- 

script, as in the second of equations (8), 

At this point another assumption is made; that is, the angles of 

rotation $   about the normals to the shell midsurface are assumed to 
n 

remain negligibly smaller than the rotations ($.  and $. ) out of the 
c       c 

midsurface throughout the deformation. Therefore, 

^ = 0 (10) 
c 

and equations  (8) and (9)  reduce further to 

.   1      2 =    u,    + — w, x *x      2     'x 

uv,     -wcosOt 2        2*2 * 
e      =    - + —*—:— + —r (w,    + v    cos    a + 2vw,  cos a) cp x x sm a -2.2„v,cp 'm v 2x    sm    a       Y T 

u» w» * 
7      =    v,    +  *—-r- - - +  T—-(w,    + v cos a) (11) xcp x      x sin a       x      x sin or  »cp v    ' 

H ~      W, 
x 'xx 

* 
w,      + v,     cos a        w, 

*      =    —^1 f- + —r (continued) cp i      ,   Z   _, X r x    sm    a 



1  * * 
t + T v, COB a     w, + v cos a 

**q      ^~     x lis a     '   2 
sin a 

(12) 

As noted In the introduction, previous authors studying conical shell 

behavior, notably Seide *  and Singer , have eaployed sianplified formu- 

lations of equations (11) and (12) by neglecting the circumferential 

displacement component and its derivatives in the curvature-displacement 

relations. These terms were also neglected in the nonlinear strain- 

displacement relations.* 

* 9 
Throughout this report, the Seide formulation will be referred to as 
"classical" conical shell theory, and the terms which are neglected in 
said formulation will be traced by a (*) superscript, as in equations 
(11) and (12). 



TOTAL POTENTIAL FNERGY 

The total potential energy IL, of the shell In the presence of applied 

external loads may be expressed as 

UT = U
m
+Ub+VL+V

m
+Vb <13> 

where U  is the strain energy due to middle-surface stretching, U.  Is 
m b 

the strain energy due to bending, V  is the potential of the applied 
Li 

surface loads, V  is the potential cf the applied edge loads, and V. 

is the potential of the applied edge moments and shears. 

An analysis of the nonlinear behavior of a conical shell in the presence 

of external loads is presented in Appendix I; in Appendix II, the 

resulting general stability equations of a conical shell are discussed.' 

In this section, however, external loads are not considered; instead, the 

equations of motion for the nonlinear free vibrations of a conical shell 

are developed. 

In the absence of applied external loads, the total potential energy of 

the shell is given by the strain energy 

U = U + U. (14) 
m   D 

The strain energy due to middle-surface stretching may be expressed as 

U    = ö ff(N €   +Ne   +N    y    )dA (15) 
mZJ^xxcpcpxtpXcp 

A 

where N , N , and N   are the middle-surface forces shown in the 
x'  cp'       xcp 

figure on page 11;  e , e , and y        are the middle-surface strains; 6 r '' x     cp xcp 
and    A    is  the surface area. 

Likewise,  the strain energy due to bending may be expressed as 

uu = " o//(M H+ M K    - 2M    a    )dA (16) b 2 ^ ^    x^c       cp cp xcp xcp 
A 

where    M ,  M  ,     and    M        are the bending and twisting moments shown in 
x'     cp xcp 

the  figure on page  11,   and H  .  H  ,  and H      are  the middle-surface curvatures. 
x'    cp xcp 

10 



Notation 

11 



The forces and moments may be expressed In terms of the strains and 

curvatures, respectively, through the linear constitutive relations given 

by 

N = x 
Eh 

2(€x + VV ^ I - v 

N ^—(e + ve ) 
9  i - v2 ^   x 

N  = Eh 
X(p  2(1 + v) X9 

(17) 

where 

Mx = -D<>Sc + VV 

M  = -M  - D(l - v) xtp   cpx 

Eh* 

'Sccp 

12(1 - v1-) 

(18) 

(19) 

Substitution of equations (17) and (18) into equations (15) and (16) 

yields 

\ - ^fH; //t(fx+ v2 ■2(1 ■ v)(eA -1 %)]dA 

üb = l//t(>sc + v2'2(1'v)(HA'%)ldA 

(20) 

(21) 

The use of the relationship 

dA = x sin d dx dr »cp (22) 

for a conical shell, in conjunction with equations (11), (12), (14), (20), and 

(21), yields the expression for the strain energy in terms of displacements. 

2n x. 

U = 
Eh    f   f    \i * „ 2^ J,u rj: J J   ^--iv +ix 

Ox,  ( 

1  •> " L v, - w cos a L   „ l.i.    . U ,    en 

2(l-v') 
x sin a 

(continued) 

12 



2    . 2 2x^ sin   a       <P 

2        2*2 *        j^ 
-(w,   + v   cos   a+ 2vw,   cos a) 

«P 

+ 2v( 1      2ju 
u'x + 2 W'x)[x 

v,    - « cos a 
+ --«> x sin a 

.    2 J     2    ~ 2 
2        2   '^W, C08    *? Ix    sin    a     «P 

+ 2vw * cos a)j+ if[v.x + r^*-5 - i + ^^(w.^ -f v cos a) 

2n   x2 /w       + *      a \2 

0    -! 

(/I           * w,_ + v, cos a w, \      /w,  + -r v, cos a 
W   V + _^) + 2(l-v)  ^  ? 1X  
x2 sin2 a    x /      \  x 8in a 

*  v2, w, + v cos a\ 

■S  x sin a  / 
x sin a dx d(p (23) 

13 



KINETIC ENERGY 

The kinetic energy of the shell is the sum of the kinetic energies 

associated with the axial, tangential and radial velocities; that is, 

CP2X2 

T » | Ph //(ü2 + v2 + w2)x sin a dx d^ (24) 

«Pi*! 

where 9. and 9- are taken from cp, * 0 to qu = 2« for the entire 

shell. 

14 



VARIATIOmiL PRINCIPLE 

The application of Hamilton's principle requires that the sinultaneous 

first-order change In the Lagranglan (£ s T - U), Integrated over a 

specified time Interval with respect to admissible variations in the 

degrees of freedom characterizing the state of strain (namely, u, v, and 

w), must vanish; therefore, 

t. 

5u ycr - u)dt 

/< 

ü)dt = 0 

Öw   / (T - U)dt = 0 

(25) 

or 

yvdt - Au dt -o 
t     t 

yv dt - jtj dt=o   > 

AT dt - Aü 
dt = 0 

(26) 

15 



DIFFERENTIAL EQUATIOWS OF MOTION 

Appropriate variation of the kinetic energy [equation (24)] yields 

6 T » ph ffüöu x sin a dxdq»  "" 
m x 

fi T » Phjjvöv x sin a dxdcp   \ 
qj x 

6 T » ph ffwöw x sin a dxdcp 
cp X 

(27) 

whereas Integration with respect to tiae gives 

ßj dt « Ph^luöu] 

t ep x 

ÄT dt = Phjfjf[v6v] 

t {p X 

x bin a dxdtp- ph///x sin a üöu dxdcpdt 

t qj x 

x sin a dxdtp - ph/l/x sin a Vqpv dxdcpit >(28) 

t cp x 

ß T dt = ph//[w6w] 2 x sin a dxdcp - Ph/YYx sin a V&v dxdq)dt 

t cp x 1 t cp x 

The variation of the total strain energy   ü    is 

6U = ÖU   + 6U, (29) m D 

where    6(   ) = ö (  )•    Substitution of equations  (15) and (16) into u u,v,w 
equation (29) yields 

6U = ^//[(N 6e    + e 6N )+(N 6e    + e 6N )+(N    67v   + rv 6«    )]dA 
2JJ      xx       xx       cpcp       99       ^P     9 9     9 

A 
(continued) 

16 



A (30) 

Now, for a linearly elastic material the following relations hold for all 

force and moment components. 

Nfc « e6N 

MÖK « KÖM (31) 

Consequently, equation (30) for the variation of the strain energy may 

be simplified to 

6U =//(N Öe + N ßc + N Ör  - M 6K - M OK + 2M OR )dA (32) JJ  N x x   <p cp   xq) xtp   xx   cp q>    xcp X9    v ' 

Substitution of equations (11) and (12) into equation (32), with 

appropriate Integration by parts and rearrangement of terms, yields 

f—= -//   xN       +N    -N   +-ffc£ in a     yy      x,x       x       cp     sin a 
cp x 

+ ffis- 6u 
J [sin a ou 

/2 [xN 6u] 
X        X, 

dcp 

(33) 

6 

sin ̂*ffV^f-Z-*tn      - ^) cot a i^-+ 2N     +xN        ) n a JJ \Y sin a       xcp,x       x    J \sin a xcp xcp.x/ 
cp x    l- 

* * 

(vN   cos a + w, N #     \ 1 
—^ :— " + N   w,   Icot a   6v dxdcp x sin a xcp   x/ [ T 

/* x /•[/ N M   cot a\ 
[(xN     + M m cot a)6v]      dcp +/   l-r2-;; "    ^ ,    ^ |6v LS    xcp       xcp '     Jx1    T   ^ j\sin a     x sin a f +J[(xNvm + 

9 ^1 

(34) 
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y •' I I x sm a 

-?* , ^        2M 

sin a   cp^x  x sin a 

+ N cot .» + -r'— [(w,„ + v cos a)N  + x sin a w. N ]. ;       sin u ^ 'cp        ' xcp 'x xJ'x 

x sm a 
(w, + v cos a)N + x sin a«. No x 'c?       ' cp 'x xT /6w dxdtp 

m 

/[ 2M      N           * 
'(xM ), - M - ~^ + -r&z (w, + v cos a) + xw, N 6« ji  x 'x   cp sxn ü   sm a v 'cp            'x x| 

9 

xM 6w, 
X    X 

dcp 

+ /1!-J— ( ^'^  - ^E - 2M   ) +  ^ (w  + V (I sin a \x sin ü  x   -"Sccp.x/ +    2  ^>+ 
* 

v cos a) 

N w, | M 
+ T^ -Xi6w ^z  öw,,,, sm u I . 2 ^   'cp F x sm Ci 

^        ^ X2 + 2[(M ) Z] Z 

«p. 1 

(35) 

EQUATIONS OF MOTION IN TERMS OF FORCES. MOKENTS. AND DISPIACEMEWIS 

When equations (23), (33), (34), and (35) are, in turn, substituted into the 

variationaJ formulation given by equations (26), three nonlinear partial 

differential equations of motion (Euler equations) are obtained for the 

conical shell in Lenna of forces, moments, and displacements: 

N - N   S 
_ü 2+ x(p,cp _ 

x,x '   x    x sin Of N   + phu (36) 
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N 2N 

x »In Ot       x^jX 

* 

N / 2M M \     .^ 
_2«B+|M*     +__>E2.JEi5E )cot g 
x y x^,x       x x sin Ot/    x 

*        . 
(w,   + v cos a \ * 

■*    : IN  +w, x sin a       /    cp        '3 'x xcp 
cot a      ... 
 = phv 

X 
(37) 

(xM ), v    X  *xx 
M 

cp.qxp 
2M M ZM^ m xtp.xcp _    cp.x _        xcp.cp 

2    . 2 „       x sin a x i    ,    ^ x    sin    a x    sxn a 

x sin a   I cp N   cos a + {w,^ + v cos QON^p + x sin a w,^ 

(W,      +  V   COS   Cü \ 

[   x sin a      ~/Ncp + w»xNx9 
'cp) 

■ phw (38) 

EQUATIONS OF MOTION IN TERMS OF FORCES AND DISPIACEMEMTS 

Through the. use of equations  (II),  (12),  (17), and (18),  the forces and 

moments may be obtained in terms of displacements.    First,  the forces and 

moments are written as functions of the displacements: 

Eh    I ,12^ N    =  r i u,    + T- w,    + V x      ,    2 /   'x      2     'x i-v   y 

v,    - w cos o: 

x x sin a 2        2 2x    sin    a 

OOO 'it 

(w,   + v   cos   a + 2vw,   cos a) 'cp cp 

E-U        ( V»„,    "    W    COS     a 

Eh   5 E +    -2 
q>      ,    2 / x x sin a 1-v   ' 

1 2 J    2    * 2 n 
—-z 5 (W'co + v    cos    a 

2x    sin    a       ^ 

+ 2vw,* cos a+ v(u,x +jw,^) 

Eh        I U'cp v W'x *      J 
%= 20^) r'*+ rnrtc - x+ Tiürz ^^+ v cos a)( 

> (39) 

and 

19 



M = -D,w,  + 
|  xx f+ 2 h (WVP + v>cos a) 

x sin u  ^    T 

^'x       1 
M = -D —^ + — ^  cp    f x    2.2 

'     x sin ^ 

* ) (w,   + V,  „OS CO + vw,  J 

Mx(p = D(l-v) 
(w,  + r v, cos a  w, + v cos a) 
I 'xcp  2  'x cp        s 

x sm u 2       ( x sin a  ? 

> (40) 

Next, the three equations of motion given by equations (36)-(38) may be 

written in terms of forces and displacements by virtue of equations (40); 

that is, 

N  - N   N 
N   + _x 2 + ^^ =  j. 
x,x     x     x sm Ct 

(41) 

N 2N 
Jh£     + N + -xg ^      D cos a 

x sin a       xcp.x        x x2  sin2 a 

* * * 
V3* w»««m + v»        cos  a 

1-v / v'x\ 
T \v'xx ■ ~r/ 

+ w,   N     I = phv 'x xcp        ! 

cos Q 

xxq> 

cot a 

x    sin   a 

* 
(w,    + v cos a\ 
_je  N 

x sin a        /   cp 

(42) 

„ _,4     .     D cos  Ci 
D  V w + -A ^  c 2.2. 

x    sm    u 
(V vj,     - 4 c   J,cp (^l x sin a {   cp 

r(w,    + v cos Ct)N     + x sin a w, N ], LV   'cp xcp x xJ'x 

(w, , + v cos  Q \ 
—^—:—  IN    + W,  N x sm 0. /   cp x : 

N    cos a 

i   = -phw 
V 

(43) 

where  the harmonic ooeratcr    V       is defined as 
c 

Vc<   )  =  (   ^xx^"^   )V. + -2-V-/)'cpcP x    jn.n    a       TT 
(44) 
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<<) = jyci >] (45) 

EQUATIONS OF MOTION IN TEBMS OF DISPIACEMEWTS 

Equations (41;-(43) may further be written in terms of displacements only 

by utilizing equations (39). The displacement equations of motion thus 

become 

—-XiiU.  + T w.  + V 
1-/(1 x   2   x 

v,^ - w cos a     1      2   2*2 

- + —2 ö—(W,
CD 
+ v c°s a 

2x sin a  y x   x sin a 

+ 2vw. cos a iL^I .. !  2  u 

"» + T w»  'x  2 'x  x 

v, - w cos a 
_*  

x sin a 

1      2   2*2 *   | —z z (w. + v cos a + 2vw, cos a)> 
2x2 sin2 a  ^ * ) 

1-v   )        y   v     'x  . 
2x sin a ) v,x  x sin a " x  x sin crw'cp 

*  I v cos Ct 
(. 9) 

= pü (46) 

1-v x sin a 

v, - w cos a 
J£ +H + 

x sin a     x  A 2 .2 
2   2 ~ 2 (w, + v cos 0: 

2x*' sin' a  ^ 

1  2 + 2vw, cos a) + v(u,x + 2 w,x) 
1-v 

'9 

u. 
v^ + £. 

x  x sin a  x 

w.. 

x sin cr 'cp ,(w, + v cos a) 1-v 

'X 

v.„ + 
u, w, 

cp    V .     X — + x  x sin a  x  x sin a 

(w, + v cos cc) 'cp 
h cos a 

2  2 12 sin a 

*      *    * 
ft'    w,  + v,  cos a 

w   + _l2^+ 'Wf 'JS£. w'xxcp ^ x  ^   2,2^ T x sin a 

1-v      'x 
+ —(v,    - -^)cos a 2   xx  x 

cotaS(%+vcos a\ 
x      Mx sin a        / 

v,  - wcosa 
u     _^  
v       x sin a 

(continued) 
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+     2 
1 2 (w.^ + v2cos2a + avw,^ cos a cos a)+ v(u,x + |w,2) 

2x sin ä      * 

w.^l-O 
^ + x      x sin •-<      x      x sin u    'cp 

r(w,    + v cos ex) ;1   .. / = pv 

(47) 

D 7 w + 
D cos u 

c 2.2 
x    sin    -t 

,„2  , ,/V,cp\    1 Eh  
(V v),     - 41—XJ      -  5  

T x1     (1-v  )x sm Ct 
cos a k 

v,    - w -os a 1 2        2*2 * 
f- —*—:— + —T z—(w.    + v    cos    a + 2vw,    cos a) 

2x    sm    Q      T T x sin Q 

12)       | 
+  .(u,x + -w.x)[  +    (w.^+v * 1-v 

cos a) -T- 
u. 

v.„ + 
5£- 

x      x sin a     x 

w. 
x * 

-(w,    + V cos oc) 
x sm u    'cp 

I 1      2 + x sm aw,      u,    + T w. 
x j     x      2     'x 

V,     - w cos  u 
cp        .   u 
x sin u 

+ - + 
X 

+ 2v-w,    cos a) 
9 

2x    sin    a     y 

* 

,    2 ^    2    ~ 2  .. (w,    + v    cos    a 

I        + l/w'cP
+v c°s a\ 

' )'x      |\    x sin a        / 

v,    - w cos a 

x sin a 

u                1                 2         2 ~ 2                 * 
+ - + —s—=—^—fw,   + v CDS    a + 2vw.    cos a) x      ,.  2     .  2     ■   'cp 'cp 

2x    sm    a     T T 

+  t(u,    + -■ w, ') 
X Z X 

w,  (1-v) 
+ -^— v^ + 

Jg  V 
w. 

y(w». x      x sin Q     x      x sin Cr   'cp 

)'cp. 
+   V    COS    Ct) phw      (48) 
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BOUMDARY CONDITIONS 

The associated boundary conditions which result from application of the 

variational principle [equations (25)] are given in terms of forces, 

moments, and displacements as follows: 

(a) along x = x1 and x = x 

N  + 

N = 0 x 

M  cos a xcp 
xcp   x sin a = 0 

or 6u = 0 

or öv = 0 

sin a(xM ), - M sin Of - 2M   + x sii> a w, N      > (49) v x 'x   cp        xcp.cp 'x x     f K    ' 

+ N (w, + v cos a) = 0    or 6w = 0 xcp 'cp — 

M = 0 
X 

or öw, = 0 —   x 

(b) along cp = «p, and cp = cp. 

N m = 0 xcp 

* 
M cos a 

N --^-.  cp  x sm o: = 0 

or Öu = 0 

or 6v = 0 

M.„      - 2  sin a(xM    ),    + x sin Q w. N 
cp,cp v    xcp 'cp *x xcp 

+ N (w, + v cos a) = 0 
r  «p 

M = 0 
9 

>(50) 

(c) at the corners of the segment 

M  - 0 xcp 

or öw = 0 

or öw, = 0 —   'cp 

or öw = 0    (51) 

These boundary conditions may be written also in terms of forces and 

displacements by using equations (40); thus. 
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(a)    along    x = x.    and    x - x. 

N    » C 
x or    6u * 0 ^ 

L D(l-.)  cos  -«,    *    ,   1 
Nxc +      2     .  2   ,    (w'x.> + I v' 

x    sia    Q 

* * 
* w,    + v cos Q 

.   »   „        COS  Q *  xv     2    'x x ) = 0 

or    6v « 0 

-D|X sin ;« ! w,      + ►- 
| I     XX 

l_, *    Jl| 
x    sin    Q       ^ Y K. 

+D sin uf—s + 
^2 ei  2 n -'cpp      "> 

(w,      + v9    cos OE) + V W,     ] 

miij 
x sin a 

x    sin    a 

, w,    + v C3s a 1 w w. „ + 7 v»    cos a  'xcp      *     'x X 

XX' 

•<p 
)(52) 

+ x sin a w,  N    + N    (w,    + v cos a) » 0 or    Ow = 0 'x x        x(pv   'tp — 

w.      + i-f—^ + -= r—(„, _ + v,      cos a)] = 0 'xx        - x 2.2^ 'arc        'm /J 

x    sin    a     T 

—    ^»x = 0 

(b)    along    9 = ^j    and    9=9- 

N     = 0 
xcp 

or   6u = 0 

V x 

* 

^+   
1 .„     (w,       + V,     cos  CX) + vw, 

2     ,  2  _     '((xp        'm *xx X     sm     U 
=    0 

or   6v = 0 

~ + ^-—(w-cpep + v * cos a) + vw.^ 
x    sin    u '9 

2D(l-v) w,       + ö v»     cos  a 
xcp      2      x 

w,    + v cos  0£ 

'x    (continued) 
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+ x sin a w,xN  + N («#„ +vco8a)«0 or 6w-0   (53) 

^+ T^Fl^'w' v>C08 a) + **'**"0    ^ ^'«P '0 

(c) at the comers 

i  * * 
w,  + j v,^ cos a - (w, + v cos o)/x or 6w - 0   (54) 

25 



REDUCTION TO CLASSICAL EQUATIONS 

A simplified set of equations of motion may fee obtained if simplified 

strain and curvature relations similar to the well-known von Kannan- 

Donnell relations for circular cylindrical shells are employed Instead of 

the more accurate relations deduced in this study  [equations (11) and 
9 

(12) ]. These simplified relations are the same as those used oy Seide 

and Singer  for the stability analysis of conical shells; they may be 
* 

obtained by neglecting all terms marked by a ( ) superscript in equations 

(11) and (12). Thus, 

= u, . 1  2 

9 x 

V,  - w cos Ct 
-la  

x sin C* 
'^L 

2   2 2x sin a 

y     ~ v     + 
xcp   'x  x sin a 

w, w, 
v   x (p 
x  x sin C* J 

(55) 

K  = W, 
X      XX 

w». ,, =.   :.^p— 
<P   2.2^ T  x sin a 

w.. 

w. xcp 'JL 
xcp  x sin Ct 

x sin o: 

(56) 

The force-displacement nonlinear equations of motion resulting from sub- 

stitution of equations (55) and (56) into the Lagrangian and carrying out 

the variations in accordance with Hamilton's principle may be obtained 
* 

here simply by neglecting the terms marked with a ( ) superscript in 

equations (36)-(38); that is, 

N - N N 
.  x   cp , xcp.cp    ... 

N   +  * + —YfT - = phu 
x,x    x x sin Oc 

N 

x sin a   xcp,x 

2N 
+ -^ = phv 

(continued) 
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4     i   i 
D 7 w £__ N cos a+ (w, N  + x sin aw, N ), (57) 

c   x sin a j 9       v '9 xtp 'x x *x        v ' 

\x sin a   'x x«p/, j   ^ 

If the motion of the shell walls during vibration is predominantly radial 

(as when there are a large number of circumferential waves in the modal 

pattern), then equations (57) admit yet a further simplification, namely, 

that of neglecting the mldsurface inertia terms. The Justification for 
13 

this simplification is given by Reissner . Thus, with the midsurface 

inertia terms omitted, the equations of motion become 

N  + 
x •■ 

N 

N - N    N 

■z x sin a 

2N 

x sin a  xcp,x   x » 0 

D 7 w ; 

>   (58) 

w :—- ( N cos a + (w, N  + x sin aw, N ), c   x sin a | cp      x *(p xcp 'x x 'x 

/w. N \  ) 
+ -Vli+w, N     =.phw \x sin a   'x xcp /, j  K 

Using the first two equations of (58), the third may be rewritten as 

D7 w -  :—- 
c   x sin a 

JSS. N (cos a + f*^— + w, sin a) + N (x sin a w,  ) 
cf,       x sin a   'x x        'xx 

+ 2xN^n(-^). XCP  X  »3 
= - phw (58a) 

Equations (58) agree ^ith those presented in Reference 25 for a nonlinear 

postbuckling analysis of a conical shell. 

The three equations of motion given by equations (58) may be reduced in 

number by one through introduction of a stress function F defined by 
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F.     F, .Jx +  <«> 
x sin a 

N 
-se . F 
h     'xx 

xtp J 
h   x sin Q^ 'xtp ;(F.. x 

(59) 

such chat the first two equations of (58) are satisfied identically. 

To establish a relationship between H    and w independent of u and v, 

the strain compatibility equation for a conical shell, as employed, for 
o 

example, by Seide , 

JS2i£_+ 
x9txcp jtxäg 

2G 

2  . ^  x sin a   2  . 2 ^ 
x sin Q x sin a 

- e 
9, xx 

Jß»x + -ib« = r(w) (60) 

is used (where F is a function of w).  Substitution of equations (55) into 

equation (69) gives 

2 

r(w) 'XX 
cos a 

x sia a 2    ..  2   „ 
x    sin    a 

/^ . 2 1 
w'xcp " w'xxWcpcp\ x )" X Sltl   a W'xW'x^ 

(60a) 

Substitution of the constitutive law [equation (17)] and equation (59) 

into equation (60), in conjunction with equation (60a), then yields the 

desired compatibility equation in terms of the stress function and radial 

displacement only as 

V F = ~ r- c 2,2 
x    sm    Ct 

2 /%\ •  2 w,       - w,    w,       -I—xl      - x sm    aw, w, 
xcp xx  'cpcp    \ x   /, 'x  'xx 

Ev,      cos a 
XX  

x sin OL (61) 

The lateral equilibrium equation may be written in terms of the stress 

function F and the radial displacement w by substitution of equations 

(59) into the third of equations (58); thus. 
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D^w . 1L£22_9 F       . ,     h 
c       x sin ar,xx       2    . 2 

x sin a 
w, F,  - 2wt F,  + w, F- 
'xx 'qxp    'xqi x<p   'qip 'xx 

+ 2 
/w. F, \ 

x sin Ci(w. F. ). 
'x X *x 

» -plw (62) 

Equations (61) and (62) together represent the simplified nonlinear 

vibrational behavior of a conical shell. They are the conical shell 

counterparts of the von Kannan-Dcnmell equations for circular cylindrical 

shells. When equations (61) and (62) are linearized, the resulting 

equations are those describing the classical behavior of a conical shell 

in free vibration; thus, 

,4   h cot a 
D7W . "■ =— p.  + phw « 0 

c    x     'xx (63) 

and 
Ew,  cot a 

7 F = =- 
c        x 

(64) 

These linear eqt ations were solved by Seide in Reference 11. 
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SUGGESTED METHODS OF SOLUTION 

The differencial equations (46), (47)r and (48) reflect the use of the 

complete strain and curvature relations given by equations (11) and (17.); 

they are three highly nonlinear coupled equations in the three dependent 

variables u, v, and v.    On the other hand, the simplified "classical" 

strain and curvature relations given by equations (55), with the midsur- 

face inertia terms neglected, admit reduction to two simultaneous 

differential equations involving only the stress function F and the 

radial displacement v. This reduced set of two simultaneous equations 

[equations  (61)and(62)] is still highly nonlinear and coupled but probably 

acre manageable in the classical sense than the initial set of three 

Siven by equations (41)-(43). However, the classical equations are valid 

only for motion of the shell in which a large number of circumferential 

waves is present. 

As a first step toward solving the conical shell equations described 

above, it would be feasible to employ properly modified techniques used 

previously for the limiting case of a circular cylindrical shell.(as 
18 

discussed by Mayers and Wrenn ). 

All of the existing analytical studies of the nonlinear vibrations of 

thin circular cylindrical shells, except for those reported in References 

18, 21, and 22, have the inherent assumptions (1) that the radial displace- 

ment is representable by a chessboard pattern,(2) that the shell possesses 

many circumferential waves (i.e., shallow-shell behavior), and (3) that 

the midsurface inertia terms can be neglected.  In accordance with 

assumptions (2) and (3), all studies have involved the solution of the 

classical equations [equations (103) of Appendix III] based upon von 

Karman-Donnell theory*. Assumption (1), however, seems to be intuitively 

incorrect. As noted in References 18 and 21, use of the chessboard 

pattern for thr. radial displacement leads to a violation of the periodicity 

*Mayers and WrennlS also carried out a first-order approximation solution 
of the equation set [equation (98)] based upon Sander's strain terms 
with midsurface inertia terms retained. 
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condition for the clrcumferenclal displacement v given by 

v(x,cp,t) = v(x,y,2n,t) 

or, 

2K 

/v, dcp = 0 (66) 

0 

when finite displacements occur. 

The fixed-parameter solution for a circular cylindrical shell, first 
22 

presented by Evensen  on the basis of the Galerkin procedure and again 

by Mayers and Wrenn  as a special case using the Rayleigh-Ritz approach, 

may be extended to the conical shell case by assuming a radial displace- 

ment which satisfies both the geometric boundary conditions and the 

periodicity condition. 

If the geometric boundary conditions are taken to be those for classical 

simple supports, namely 

w(x>9,t) = w(x2,cp>t) = 0 

(67) 

v(x,cp,t) = v(x2,cp,t) = 0, 

then a corresponding second-order approximation fiar the radial displace- 

ment w which satisfies the boundary and periodicity conditions may be 

taken as 

2 2 
. n«(x-x )         n A (t)   . 2 nmCx-x.) 

w = A1 (t) sin  r_ cos n9 + 1     sin      1 
x^-x, 4xsina cosa     x„-x.,        ,..„. 
^.1 2 1       (68) 

where A.(t)  is an arbitrary function of time. However, by restricting 

the time-dependent coefficients to terms proportional to A., (t)  and 

2 
A1 (t),  the resultant motion is forced to be periodic, although not 
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necessarily harmonic. 

A Rayleigh-Ritz approach (as described in Reference 18 for a circular 

cyliT.liical shell) may then be used by substitution of the assumed 

deflected shape into the compatibility equation [equation (61)] and 

obtaining a particular solution for the stress function F. The stress 

function thus obtained and the assumed deflection function v  should lead 

to satisfaction of the requirement that the circumferential displacement 

v be periodic in 2it. F and v are then substituted into the Lagrangiaa 

written in terms of stresses (and therefore in terms of the stress 

function) for midsurface behavior and in terms of v for bending behavior. 

The application of the variational principle relative to A.(t) would 

thus yield a second-order nonlinear differential equation, which through 

a single change of variable nay be reduced to two coupled first-order 

nonlinear differential equations. These may then be solved by a standard 

Runga-KutJ-a numerical technique. 

The solution obtained in the preceding manner will, as previously stated, 
18 

be periodic, Mayers and Wrenn  waived this restriction for a circular 

cylindrical shell by allowing for a free-parameter solution. The 
22 

boundary conditions were the same as those stipulated by Evensen 

(free support). The boundary conditions will not significantly influence 

the frequencies of vibration when a large number of waves are present in 

the axial direction; thus, for long shells, on a minimum energy basis, 

the nonperiodic behavior governs. 

Extending the approach to a conical shell, an assumed radial deflection 

shape may be taken as 

mjux-x.)                2mn(x-x ) 
w = A (t) sin   cos ncp + A9(t) cos   + A (t)   (69) 

where A. (t) , A;)(t)  and A (t) are arbitrary functions of time. 

A displacement function of this type was also used in a study of the 

postbuckling behavior of conical shells presented in Reference 25. 

N'ext, using the assumed displacement function w, the solution for the 
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stress function F is obtained from the compatibility equation 

[equation (61)], and the parameter A_(t)  is then determined by impos- 

ing the continuity condition on the circumferential displacement: v. The 

w and F functions thus obtained are finally substituted into the 

Lagrangian (in a manner similar to that described previously for the 

fixed-parameter case) and variations are taken with respect to   A.(t) 

and A^(t). The resulting nonlinear differential equations may again 

be solved using a Runga-Kutta numerical technique. 

Application of this method to the circular cylindrical shell resulted 

in a solution which displayed nonperiodic motion; the same type cf 

behavior can also be expected in the case of a long conical shell. 

The two solution approaches described above involve much greater diffi- 

culty when applied to a conical shell than when applied to a circular 

cylinder, since(1) the classical equations of equilibrium [equations (61) 

and (62)] for a conical shell are more complicated than those for a 

circular cylindrical shell [equations (106) and (107) of Appendix III], 

and (2) the stress-compatibility equation for the conical shell is a 

bihanaonic equation with variable coefficients. Nonetheless, the methods 

of solution may still be used and they are presently undergoing further 

study in connection with the overall research effort related to conical 

shells. 

When the number of circumferential waves is not large, the classical 

equations are Invalid and should not be used; rather, the equations of 

motion [equations (4l)-(43)] based on the general strains and curvatures 

[equations (11) and (12)] with retained midsurface inertias should be 

solved. Alternatively, a direct approach may be used by substituting 

assumed time-dependent displacement functions directly into the total 

potential energy as given by equation (23) and applying the variational 

principle relative to the assumed time-dependent parameters. 

18 
Mayers and Wrenn  used the latter procedure for a circular cylindrical 

shell; however, due to the obvious algebraic difficulties, only one 

term in the radial displacement function was retained, thus eliminating 
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the possibility of the shell deforming in its typically nonlinear fashion. 

As a result of this forced chessboard pattern, the resulting motion was 

periodic; however, for very small amplitudes of vib?"tion, the periodic 

solution is an excellent approximation. 

When extending this approach to the case of a conical shell, displacement 

functions for u, v, and w which satisfy the geometric boundary conditions 

lor w and the periodicity condition may be taken as 

w - A (t) sin 
nHt(x-x ) 

Vxi 

nnt(x-x ) 
u = «„(t") cos   

2       x2-xi 

cos ncs 

2mjt(x-x ) 
cos ncp + A (t) cos cos 2n9 

A 

+ A,(t) cos 

"2 "1 

2mjt(x-x ) 

) JO) 

mn(x-x ) 
v = A (t) sin   

2mjt(x-x1) 
sin ncp + A (t) sin   

b       x_ -x. 
sin 2ncp 

2 "1 

+ A (t) sin 2ntp 

Substitution of equations (70) into equations (23)and(24) and the enforce- 

ment of the simultaneous vanishing of the first variation of the 

Lagrangian with respect to the various A.(t)  functions would lead to a 

set of seven second-order coupled nonlinear differential equations. After 

a change of the independent variable and subsequent reduction of the 

seven equations to fourteen first-order nonlinear differential equations, 

the solution is then obtained using a standard Kutta-Merson numerical 

technique. 

The solution techniques described above all suffer from a common 

disadvantage; namely, the number of terms which may be retained in 

the assumed displacement functions are limited as a result of algebraic 

complications.  However, a numerical approach is presently being studied 

in which a gener?)! series solution for the various displacements may be 

assumed and a large number of terms retained.  The method may best be 
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understood by demonstrating it for the problem of the nonlinear vibra- 

tion of a beam. This is accomplished in Appendix V, 

The proposed method basically involves the selection of assumed displace- 

ment functions in the general series form 

w=£ $.(x,0 A (t) 
i=l 

m 
v = J3 $.(x,cp) A (t) (71) 

i=i+l 

n 

i=nH-l 

where A.(t),  i=l,2,..,n are arbitrary functions of time. 

Substitution of equations (71) into equations (23) and (24) and the 

enforcement of the simultaneous vanishing of the first variation of the 

LagrangIan with respect to the various A.(t)  (without multiplying out 

the series or carrying out the integrations) will lead to a set of n 

second-order coupled nonlinear differential equations. After a change 

of the independent variable and subsequent reduction of the n second- 

order differential equations, the solutions mav be obtained using the 

numerical procedure demonstrated in Appendix V. 

The most general set of appropriate displacements for a conical shell 

which satisfies the simply supported conditions and periodicity of the 

circumferential displacement would be equations (71) with 

V 
ö. (x,cp) = sin iß(x-x1) J) 

cos J^P »  l^i^-ß 
1 j=l 

m' 
<£. (x,cp) = cos(i-i)ß(x-x )  ]r  cos jcp     ,  i+l^i^m  (72) 
1 j=i,+l 

$. (x,cp) = sin(i-m)ß(x-y,)   2J  sin J"?    »  m+lSi^n 
1 1  j^'+l 
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wlu- TV 

p= TV (73) 
2  1 

In «.r.si.p.cc, ♦. (x,,> may be taken as any type of function; the numerical 

technique »Iocs not differentiate between types of functions and is there- 

tare not  limited in this respect. 

The luain aw-rit of this proposed noinerical technique is that there is 

no necessity of expanding, multiplying, and integrating the assumed diö- 

ptaccraent functions analytically at any time during the solution.  Further 

merits and some drawbacks of the method are discussed In Appendix V. 

Finally, another method of solution, which involves the use of a 

ruKlificd-Ki'issner variational principle, should be investigated, 

ihis method was introduced in Reference 28 and again used successfully 

in Reference 29.  It involves writing the strain energy of the system in 

such a manner, that Hocke's law [equations (17)] Is not necessarily 

cnlorced prior to variation for middle-surface stresses and strains 

chough it is forced for the bending terms. This approach Is shown to be 

highly convergent and accurate for both thin plate and shell problems 

undergoing finite deflections even in the presence of inelastic deforraa- 

t ions . 

ihi.-. method of solution and all the others previously described are 

presently being investigated. The results and conclusions are expected 

to provide the same level of knowledge for the nonlinear vibrations 

ami maximum strength o£ conical shells as has now been developed for flat 
28 29 32 33 

plates and circular cylindrical shells by Mayers et al.  *  *  *  . 
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CONCLISIQXS 

The governing differential equations and associated boundary conditions 

for the noniinear vibrations of a thin, truncated ccnical shell have been 

developed by means of Hamlton's principle.  The equations are based upon 

the nonlinear strain-displacement relations deduced fron; those developed 

by Sanders for thin shells of arbitrary shape. 

Governing differential equations and boundary conditions have also been 

developed for the nonlinear behavior cf a conical shell in the presence 

of static and dynamic loads. These equations apply equally well to 

forced nonlinear vibration problems, nonlinear vibrations of a prestressed 

shell and non.'.inear prebuckliag and postbuckling behavior of an arbitrarily 

loaded shell. Linearized stability equations and boundary conditions 

using the nonlinear terms of this study have also been developed. 

All equations derived in this report have been shown to reduce (by a set 

of simple substitutions) to corresponding equations for circular cylin- 

drical shells and circular flat plates. The equations have also been 

shown to reduce to the so-called "classical" conical shell equations 

when the circumferential displacement terms in the curvature and nonlinear 

strain relations are neglected and the midsurface inertias are omitted. 

Various methods of solution extending from those applied in similar 

investigations of circular cylindrical shells have been presented, and 

a modifled-Reissner variational principle ne thod of solution has been 

suggested. Finally, a new direct numerical solution scheme has been 

proposed and demonstrated analytically. 

Future efforts in this area should include implementation of the proposed 

methods of solution for the nonlinear vibrations of a conical shell and 

a comparison of the various methods.  The raodified-Reissner variational 

principle approach and the new numerical scheme should at first be 

employed to obtain solutions for the nonlinear vibrations of a circular 

cylindrical shell.  Comparison with the previous solutions should 

determine the merits (if any) of these methods, and it may then be 

decided whether they should be applied to the conical shell problem. 
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Finally, these same methods of solution should be applied to nonlinear 

forced vibration problems and to the Important design probleas of the 

nonlinear postbuckllng behavior and maxlmua strength of Initially 

imperfect conical shells. 
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APPENDIX I 

EQUATIONS FOR THE NONLINEAR BEHAVIOR OF CONICAL SHELLS 

UNDER ARBITRARY LOADS 

Equations for the nonlinear behavior of conical shells acted upon by 

externally applied arbitrary loads may be derived without significant 

further difficulty by adding to the strain energy U  [equation (14)] 

the potential of the applied loads; that is. 

Ü = U + VT + V + V.. 
T       L   m   b (74) 

where U  is the total potential energy of the shell in the presence of 

applied loads. V  is the potential of the applied surface loads 

(q ,q , and q ), V  is the potential of the applied edge loads (N , N , 

and Ä ), and V.  is the potential of the applied edge comei.ts and 

shear forces  (M , M , M , Q , and Q ). 
x  cp  x<p  X        tp 

The applied-load potentials may be represented as 

\m ' //(<!" + q. v + q w)  x sina dxd9 (75) 
cp x 

x2 _     ^2 

vm = -f [(v+ Vx sina dcp /lV + V 
Cp Xj X Cpj 

dx (76) 

Vb = /[ x sina (-M w,    + 

9 

-/ 

M   w, 
,.,     . -^^   +Qw) xx      x sm a x 

% 

9 1 

°    T—    + M    w,    + Q w        dx 
x sm a xcp   x        cp    j 

d9 

(77) 

The required variations are 

43 



> 

6 v   = -   s 
u m 

6 V    =   -T fq    x slnvt 6u dxdcp 

9    x 

6 V    =   -f fq^x siiM öv dxd9 

■C    x 

6 v   = ~j f^ x sina ^ '*x^c? 
9   x 

xN     6u]'  dcp + f[N m6u'    dx 

1 X 

v ni 

6 V    =  0 
w m 

n:f[ 
9 

ö V    =  -    sinü/LxN^ 6v]' dcp+MN^ öv]2 dx   ) 
xo 

1 X «Pi 

6 v   = 0 
u  b 

6 v,, = o 
v b 

6 V    =     s 
w b 

(78) 

(79) 

x2 (80) 

inu fix ( *%!$_ - Q   1 6  I dcp + /"[(M  „    - QJ   6w] dx 

cp '        ' X 

,„/l +    s iru /   I xM    6w, 

1 '2 

4?    I x s mu r 

9i 

dx - 2[[M    Öw]2 ]2 

cp, x 1 "1 

Equations   (78)   through  (80)   are added  into the variational equations 

equations   (26)]   such that 

6u.v.w/^  -  V   dt =  6u,v.w/^  -  "  - V
L  - V

ra - V- -  Ü 

t t 
(81) 

whore the expressions for 6    T and  6    U are given by equations 
u,v,w        u,v,w J     ^ 

(27. and (33)-(35), respectively. 

The variation results in three Euler equations, which are the same as 

those given by equations (36)-(38) with the addition of the surface loads 
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1 
■ 

q   , q      and    q ,   respectively,to the  left-hand side ot each equation. 

The equations of motion in terms of stresses and displacements are the 

same as those given by equations (41)-(43) with the respective surface 

loads added to the left-hand sides of the first two equations and to the 

right-hand side of the third; the same is true for the displacement 

equations of motion given by equations   (46)-(^8). 

The resulting boundary conditions are 

(a)    along    x = x1    and    x = x« (82) 

Nx = Nx or    6u = 0 

* 
M    cos Q 

N      - -^——    = N or    6v = 0 xcp     x sin a xcp UJ.    wv      u 

2M N * 
(XM ) .     - Mt S2i£_   +  _4iL_  (w      + v cos a)  + xw, N 

xx        cp        sm a sir. a  v   'cp 'x x 

M 
a 

%x      sin a =  xQ    - -^ or    öw =  0 

M   = M or    6wf    = 0 xx —        'x 

(b)    along    cp = cp,    and    cp = cp. (83) 

f 

N      = N or    6u = 0 
xcp       xcp — 

* 
M   cos a 

N,n - -£—.—— = N or    öv =  0 cp     x sin a qj — 

M 2(xM    ), N * 
y^y    -  ^—— + —2.—_ (W) + v cos a) 

x sin a x x sin a 9 

+ Nw, =Q-M,„ or6w=0 xcp    x cp        xcp,x   

M   « 5 or     öw,    = 0 cp       cp 'cp 
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ici  at the corners of the segment 

M  = M or öw 
xr   xc — 

(84) 

All equations and boundary conditions presented in this appendix reduce 
9 25 

to tho-.e of classical conical shell theory •  by linearization of the 

equations and neglect of those terms marked by a ( ) superscript. 
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APPENDIX II 

GOVEHNING EQUATIONS AND BOUMDARY CONDITIONS FOR THE 

STABILITY OF CONICAL SHELLS 

Additional definition of symbols; 

M , M , M u    additional moments causeu by buckling 

M , M , M    moments prior to buckling 
x  '    cp        xcp r & 

o      To        To 

N  , N  , N additional  f«   ces caused by buckling 
X Cp        XCp JO 

N    , N     , N forces prior to buckling 
x '    cp '    xcp o      To        ^o 

e  ,  e   , y linear strain terms 
x  cp  xcp 

e', e', y'      nonlinear strain terms 
x  cp  xcp 

Linearized stability equations and boundary conditions for a conical 

shell may be readily obtained from the general equations of nonlinear 

behavior of conical shells derived in Appendix I. 

The equilibrium at the time of buckling is obtained by consideration of 

the additional work done during buckling. The displacements u, v, and 

w are now the additional displacements caused by buckling, and the pre- 

buckling displacements are assumed to be small so that the additional 

displacements can be related to the undeformed geometry of the shell. 

The additional strains are taken as the nonlinear terms of equations (11), 

namely* , 

e' = T w 
1 2 
2 W' x 

:'       1       2        2o 
=   —= s— (w, + v cos^ a + 2vw, cos a) 

^   2x2 sin2 a  > >    ' 

(cor* inued) 

*These nonlinear terms differ from those used in previous studies^»^»25 
by retention of the tangential displacements terms. 

A7 



.    .  2   (v      ♦ ▼ c«s ^ Ct5) 

litt  iaccTMl  t^rce« am* mamtmts    1    mad    M   of «fMtiM* (331-(35), 

«lä the Mcl'jwar tcxat «ndccedl, awe na« kc rcrlacci by    5 4-1 

«D*    H -•' H      rr«pccciv«lyv ami tht joteati»! of tkc ■oAnae focc^s 

»ri^r «^ 4wckSi«t    &    • x„ -    J"*    li-~ >    "^^ ^ ■**»* to tflw «t  !»- 

ci-oMl e^eatio»  >if «HJM (il); with the kiaecic «tiu ecm «wittwl. 

»MicalU. «ish   A   wywwrtt Che nriaee «m. this 

»   //   <s    ♦ s    :  4       ♦(«♦>> 4k      ♦ (1     -H      )  «y      ]M 
j. o o co o o 

A 

* «C   *■ ftr   ♦ *?   ♦ ar   «= t (•§) 
a L h c 

.Acre    \      is (the total potcatLal cocscf *m€iM% hockliag   «ai   i      is 

the straia cacigy atocad Arias fenckltai b« the aiMlc-sorfac* force« «f 

tht «ohBckioi state; Chat is 

*■   ' ffl*    Ät'+S    ^'♦B      ft/"   | *A (87| 
o ^o o 

A 

Ihr eapressioas (or 0V . ft? . and 0?^ are giaca hf efabCLoas 

(IS chroogk (Ml. 

Ai:<r e^aazioos (36^--(3Si with the aoaliacar tetae caittoi 

«jod surface load ccrat added as per ippeodi« I) are also ctnsidercd. 

tin-  »tab^liljr equation? and boundary coadiciaw are cbtaiaed as 

» - 3      I 
X   ♦ — *- ♦  ^'^   « 0 (sS) 
x.s     x       x sin a 

23 
+ x    + _JB    ^^ ♦ 

x sic .:     xc«x    x        x x  ^ x^i.x   x     z sin Q f 

1/ w,    ■•■ w cos ^\   _ a ( -^ | K +w
x

l 
y    x sin u f       0 

cot u| f  "'a ^ ' — - I  »_   + w. K       1-0 (89) 
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2M H 2M 
.        «?i«W   _      ?«»    ,      «*■« 

x *la a x 2    , 
x    sin a 

♦   ^-^M    ♦777---        |(w.    +vco$u)» ^ ^     1 sin J  I     I      s it© 

■f K sin u w 

I. + ^'J1,«       : " 0 (90) «.•n z za 

Ike bouadar/ coaiitioos are* 

(a)    «loog   iseBx     and    z«x. 

■^ « 0 or fiu « 0 

■     +   ^ :—r-   "0 or 6v » 0 «9      x sin a ^i v»     v 

sin a (sM )       - Mm sin O - 2M ^                                          (91) 

* 
+ x sin a v, ■     + (w,    + v cos CQM       »0       or Öw » 0 

xxo           "? «^               — 

M   « 0 or fiw,    - 0 x —        »z 

(b)    along   9*9,    ***&   tym % 

»«„ " 0 or    öu = 0 x«p — 

M   cos a 

q>     x sin a 0 or    6v = 0 

Mm      - 2 sin a (sM   ). (92) 

* 
+ (w,    + v cos Q)N     + x sin aw. N        =0        or    6w = 0 

9 q)o x x9o — 

(continued) 

^Equations  (49) -(51), with the nonlinear terms onitted, must also 
be used in the derivation. 
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M., = 0 or Öw, s 0 
y —    9 

(c) at the corners of the segment 

M p, = 0 or 6w - 0    (93) 

The stability equations and boundary conditions presented above nay also 

be written in terms of either forces and displacements or displacements 

only by using equations (39) and (40). In this study, however, these 

rewritten equations may be obtained direc.ly from equations (41)-(43), 

(46)-(48), and (52)-(54) simply by deleting the inertia terms and apply- 

ing a zero subscript to the forces in the nonlinear terms consisting of 

products of forces and displacements. 

The stability equations and boundary conditions derived In this appendix 

represent linear buckling theory based upon the strains and curvatures 

defineu by equations (11) and (12) respectively. All the foregoing 
9      10 25 equations reduce to those presented by Seide , Singer , and Schnell 

* " 
when terms marked by a ( ) superscript are deleted. 
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M'I'ENDIX III 

REDUCTION OF THE GENERAL WONLIWEAR CONICAL SHELL EQUATIONS TO 

THOSE FOR A CIRCULAR CYLINDRICAL SHELL 

In the present study, general nonlinear equations for the bending, 

buckling,and vibrations of conical shells have been developed. The 

geometry of a truncated conical hell if such that it develops into a 

circular cylindrical shell of radius R = x sin a as the semi-vertex 

angle a approaches zero. Accordingly, all equations developed in the 

present study for a conical shell reduce to those for a circular cylin- 
18 

drlcal shell (as presented by Mayers and Wrenn  based on Sanders' 

theory) through the simple set of substitutions 

x sin a ~ R 

a = 0 

i » 0 (94) 
x 

y  R 

where y Is the tangential coordinate on the shell middle surface in the 

circumferential direction. Some of the more important relationships 

derived through use of the above substitution are listed in this 

appendix for completeness. 

MIPSURFACE STRAIN-DISPLACEMENT RELATIONS (rotation about the normal 

neglected). 

By virtue of equations (94), equations (11) reduce to 

>. 1      2 e = u, + ö w> x   'x  2  x 

* 

6 = v,  - w/R + -/(w,2 + v2/R2 + 2vw, /R) (95) 
y   y      ^  y y 

* 

7  = v, + u, + w, (w, + v/R) 
xy   'x   *y   'x 'y 
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CURVATURE-DISPLACEMENT REIATIGNS 

Equations (12) reduce co 

K     " V, 
X      XX 

H  = W,   + V, /R 
cp   yy   y 

I  * 
K      = w.  + "7 v,  /R 
xcp    xy  2   x 

(96) 

When the terns marked by a superscript ( ) are deleted, the equations 

reduce to those of classical von Karman-DonneII theory. 

TOTAL POTENTIAL ENERGY 

The total potential energy Is given by 

iL = ü + u. + vT + v + v,, 
T   m   b   L   m   b 

Reduction of equations (23) and (75) through (77), in conjunction 

with equation (97), yields 

(97) 

uT = - ifjjfl*'* + * W'  *)2 + CV'y " W/R + 2   «'l + J'*2 

y x 

+ 2vw,y/R)]2 + 2Ku,x + | w, x)   [v,y - w/R + |(w,* 
* 
<v -ft 

+ v2/R2 + 2vw,   /R)]    +   -—- [v,    + u,    + w,   (w, v 2       '■    x y x      v 

/R)]2   dxdy + ^// w,2    +(w,    + v,   /R)2+ 2vw,     (w,    +v,   /R) | 2JJ |    xx    v  'yy      'y 'xxv  'yy    'y    ' 
yx 

// 'v 
y x 

[-Nu + N    v]     dy - /   [N v + Nu]    dx  - /   [-M w, 

+2(l-v)(w>      + v,*/2R2      dxdy 
xy 'x ( 

+ q v + q w)  dxdy 

-    X2 f    - - -    y2 
+ M

xy
w'y 

+ V]   dy ' / ["Myw'y + V'x + V3   dx 

\     i       ' yi 
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The expression given by equation (98), with the applied load terms 
18 

deleted, was used by Mayers and Wrenn  in obtaining a first-approxima- 

tion solution to the free vibration behavior of a circular cylindrical 

shell undergoing large displacements and moderate rotations. 

FORCE-DISPIACEMENT EQUATIONS OF MOTION 

Reduction of equations (41)-(43), with the addition of the 

applied load terms, yields 

N   + N  y = phü - q x,x   xy, x 

N   +N    + (D/R2)[R(wJ*  + w,* ) + v.* +^(l-v)v,  ] 
y.y   xy,x      '   'xxy    yyy    yy  2      'xxJ 

* 
-   [(w,* + v/R)N + w, N  ]/R = phv - q L v 'y      y    x xy ^y 

D7 w + D(V2v) , /R - N /R - [(w, + v/R)N  + w, N ], 
'y    y      y     xy   x xJ*x 
* 

- [(w,  + v/R)N + w, N  ],  = q  - phw L\ »y     ' y    >x xy
J'y   ^z 

BOUNDARY CONDITIONS 

Equation (49)-(51) reduce to 

(a) along x = Xj and x = x 
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(99) 

N = N or 6u = 0 xx — 

N  + M /R = N or Öv = 0 xy   xy     xy — 

M   - 2M    + N (w, + v/R) (100) x,x    xy,y   xyv 'y   ' ' v  ' 

+ w, N  = Q. - M or 5w = 0 'x x    TC   xy,y — 

MlftiiiTTIti^ ä&Mü£ä&.  ^ ■•■-*■«■■ 



M = M *.   „ xx or on,    ■ 0 
—    x 

(b) along y = y1 and y » y2 

N  = N or 6u - 0 xy   xy — 
* 

N - M /R = N„ or 6v = 0 y     y y   

* 
M   - 2M  „ + N (w,  + v/R) y,y    xy,x   y  'y 

+ w, N  = Q  - M ,    ,. x xy  ^y   xy,x or 5» = 0 

M = M or öwr. = 0 
y  y —   y 

(c)  at the corners of the segment 

M  = M or fiw « 0 xy   xy — 

(102) 

CLASSICAL NONLINEAR EQUATIONS 

Reduction of equations (58) yields the classical nonlinear differential 

equations of motion for a circular cylindrical shell having a large 
18 22 

number of circumferential waves  *  ; that is, 

N   + N    =0 x,x   xy.y 

N   + N    =0 (103) 
y.y   xy,x 

4 
DV w - N /R - (w, N + w, N ),  - (w, N  + w, N ) = -phw y      xx    y xy 'x     x xy   'y y' 

Using the first two of equations (103) , the third can be rewritten as 

DV w - N /R - (N w,  + N w,  + 2N w,  ) = -pb'V       no4) y    ^ x 'xx   y yy   xy xy vw*; 

The stress function definition of equations (59) reduces to 

N = hF, (continued) x     yy 
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N = hF, 
y      XX 

N  = -hF, 
xy     xy 

The compatibility relationship [equation (61)] reduces to 

2 v4r E(w. xy w, w, ) 
'xx 'yy 

Ew,  /R 
XX 

and the lateral equilibrium equation [equation (62)] becomes 

DV w - hF, /R - h(w, F,  - 2w, F,  + w, F, ) = -phi/ 
'xx      'xx 'yy    'xy xy   'yy 'xx 

(105) 

(106) 

(107) 

Equations (106) and (107) represent accurately only the free nonlinear 

vibrational behavior of a circular cylindrical shell having a large 

number of circumferential waves. Various approximate solutions for 

periodic behavior have recently been obtained for these equations, 
19 „..„_, .20   , „    22 

notably those by Chu , Nowinski , and Evensen The most recent 

solution, based on the energy formulation of the problem, is that 
18 

obtained by Mayers and Wrenn . In their work, previous periodic 

solutions are discussed and their validity is questioned on a minimum- 

energy-criterion basis. 

Equations (106) and (10?) with the radial inertia term omitted are one 

of the equation sets commonly referred to as the von Karman-Donnell 

equations governing the large deflection behavior of thin plates and 

shells in the presence of midsurface forces. 

All of the conical shell equations derived in Appendix I for nonlinear 

behavior under arbitrary loads and in Appendix II for stability behavior 

may also be easily reduced to corresponding equations for circular 

cylindrical shells through the substitutions given by equations (94). 
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APPENDIX IV 

RKDUCTIQN OF THE GENERAL NONLINEAR CONICAL SHELL EQUATIONS TO THOSE 

FOR A CIRCULAR FIAT PLATE 

In Appendix III the limiting case of a circular cylindrical shell is 

considered and the basic equations describing itfc nonlinear behavior are 

easily derived from the conical shell equations. Another limiting case 

occurs when the semi-vertex angle Q approaches the value it/2.  In this 

instance, the general nonlinear conical shell equations reduce to those 

for a circular flat plate, with a concentric hole, by virtue of another 

simple substitution; that is, 

a = ic/2 

x sin a = x = r (108) 

INPIANE STPAIN-DISPIACEMENT RELATIONS (rotations about the normal 
neglected) 

By virtue of equations (108), equations (11) reduce to 

, 1   2 
er= u'r 

+2 W' r 

y      = v, + (u,  - v)/r + w, w, /r 
'rep   r    cp r 9 

CURVATURE-DISPIACEMENT REIATIONS 

Equations   (12)   reduce to 

K    = w, r rr 

V WVr2 + W'r/r (110) 

K      = W,     /r  - w,   /r 
rep rep cp 
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TOTAL POTENTIAL ENERGY 

The  total potential energy  is giv<;n by 

UT = üm + \ + VL + Vrn + Vb (HD 

Reduction of equations (23) and (75)-(77) in conjunction with 

equation (111) yields 

U = Eh 

T T)ff\{xi,t + *w,2r)2 + [(u + v^)/r 4 w4/2r2]2 
2(1 cp r 

+ 2v(u      +y W,J)[(LI + v,  )/r + w.2/2r2] 

1-v 2 ■ + -5- [v      +  (u,     - v)/r + w    w.  /rj    *   rdrdco 

+ f i/ {w4r + [w'cpcp/r2 + W'r/I]2 + 2v w'rr[w'w
/r2 + W'r/r] 

cp r 

+ 2 (1-v) (w,^ /r - w,  /r )    '   rdrdcp -   /|   (q u + q v + q wj   rdrdcp 
cp r 

-  / [r(N u + N    v) ]2 dep - /* [N v + N    u]2 dr 
7 r ^9   r      ^   ./      9 rep ,J 

9 

-y*[r(.Mrw,r + M^vyr + Qrw)]2 dep -/["M^^/r 

cp 1 r 

+ MrcpW'cp/r + QcpW]    ^ (112) 

FORCE-DISPLACEMENT EQUATIONS OF MOTION 

Reduction of equations (41) -(43), with the addition of the 

applied load terms, yields 

N   + (N - N ) /r + N   /r = phü - q 
r'r    r   9     rcP.9        Hr (continued) 
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(N        + 2N    )/r + N - phv - q (113) 

D7   w -  (1/r) [ (w, N      + rw, N ) ,    + (w, N /r + w, N J ,   ] 
r cp rtp r r    r jp cp r rqf 'cp 

where 

-phö + q 

V4
r () = 72

r [^ ( )] - 7^ [  ( ),„ + ( ).r/r + ( )      /r2] 

BOUNDARY CONDITIONS 

Equations  (49) -(51) reduce to 

(a)    along    r » r      and    r = r» 

r,r cp rcp.cp 

H   » M r        r 

(b)    along    cp = cp.    and    cp = cp2 

(114) 

Nr - Nr or    6u » 0 

N      = 5 or    6v = 0 rep       rep — 

M   + rM - M    - 2M (115) 

+ N      w,    + rw, N    = rQ    -M *.       „ 
rep     cp r r r      r(^,cp or    ow = 0 

or    6w,    = 0 —        'r 

N      = N or    6u = 0 rep        rep — 

N    = N or    6v = 0 
cp       cp — 

M      /r - 2M    /r - 2M                                                                      (116) 
cp.c?             r9 rcp.r 

+w, N/r+w,  N=Q-M . 
ep cp             r rep       cp        rep.r                  or    Ow = 0 

M   = M or    öw.    = 0 
cp       ep —        'ep 
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(c)    at the comers of the segment 

M     » M (117) 
r9        rep 

CLASSICAL NOHLINEAR EQUATIONS 

Equations (58) reduce to 

rN        + N    - N    + N »0 
r,r        r        q)       rqj.cp 

N        + 2N      + rN =0 (118) 
cp,q; rep rjp,r 

Dv* w -  (1/r) [w, Nw   + rw, N ),    + (w, N /r + w, N    ) .  ] = -phw 
r (p rep r r    r cp cp r r©   tp 

Using the first two of equations (118), the third may also be written as 

Dv„ w - N  (w,    + w,    /r2)   - w      J   + 2N    (w,  /r2  - w,     /r)  =  -phw 
r (p     x qxp »r x xcp     cp rep 

(119) 

The stress function definition of equations (59) reduces to 

Nr/h - F,r/r + F.^'r
2 

N /h = F. (120) 
cp     *rr 

N /h = F, /r - F, /r2 
xcp    *rcp    'cp 

The compatibility relationship [equation (61)] reduces to 

74 F = (E/r2)[w,2 - w, w,  - (w, /r),  - rw, w,  ] (121) 
r 'rep    rr epep    cp   r     r rrJ 

and the lateral equilibrium equation [equation (61)] reduces to 

DV   w -  (h/r )[w,    F,       - 2w,    F,      + w,    F,      + 2(w, F, ),  /r 
r /L   'rr    epep rep   rep epep    rr 'cp 'cp   r 

+ r(w, F, ),  /r + r(w, F, )       - 2w, F,  /r2] = -phw (122) 
rcpt rrr 9cp 

Equations (121) and (122) describe the nonaxisynaetric, nonlinear 

vibrational behavior of a thin circular plate. When axial symmetry 
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is assumed, all derivatives with respect to cp vanish and the 

governing equations becooe 

7 F » -Ew, w. IT 
r      'r rr 

4 (123) 

D7r w - h(w,rF,r),r/r - phö 

These simplified equations are equivalent to those used in some 

recent studies of the nonlinear dynamical be 

shells, notably those by Yamaki  and Bauer 

recent studies of the nonlinear dynamical behavior of flat circular 
.26  . _   27 
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APPENDIX V 

SUGGESTED NUMERICAL SOLUTION PROCEDURE WITH TLLUSTRATIVE 

APPLICATION TO THE NONLINEAR VIBRATIONS OF A BEAM 

Additional definition of symbols: 

A cross-sectional area of beam 

I cross-sectional area moment of inertia 

i,m,i,r integers 

L length of beam 

M . generalized mass functions 

q generalized coordinates 

u axial displacement of beam 

w transverse displacement of beam 

x axial coordinate of beam 

z transverse coordinate of beam 

p mass density of beam 

$ (x) functions of x 

f functions defined by equations (130) 

The proposed numerical solution for the nonlinear vibrational behavior 

of a conical shell can best be explained by demonstrating its use for 

the simple case of the nonlinear vibration of a beam. 

The expression for the total strain energy of a beam in the absence of 

applied loads may be obtained directly from its conical shell counter- 

part [equation (23)] as 

L 2      . L 

U = 7/EA(u.x + | w,x)2dx + I/EIW,^ dx       (124) 
o o 

and the kinetic energy is 

L 

T = ~f(A(u2  + w2) dx (125) 

o 
General displacement functions may be assumed in the  form 
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w =  £   *. (X)  q. (t) 
1-1    l 1 

m (126) 

1-Afl 

Substltu.ion of equations   (126) Into equations  (124) and  (125) and the 

enforcement of the simultaneous vanishing of the first variation of the 

Lagrangian    (T-U)    with respect to the various    q.(t)     lead    to a set 

of    m    second-order nonlinear differential equations;  that is. 

where 

T] M . ef. + *   =0 
iti    ri    *        r 

m 
E Mri ^ + tr = 0 

i=je+i      1     r 

1 i r s i 

jfrf 1 s: r s m 

Mri ' f^ *i(x) *r(x)  ^ 

(127) 

(128) 

and 

L m I 

■r   o     l i=je+i   1 Jl 1=1 
*;(x)dx 

o I     1=1 

/■L 

+  y EI*^   £ $'i|(x)q1(t)dx 

$ f(x)  dx r 

o l   1=1 
* '(x)  dx r 

(1 s r ä i) 

(129) 

(continued) 
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L 

+ / EA* '(x) £ * ,(x)q (t)dx    (/+1 S r ^ a) 
J x      i»ifl 1   i 

o 

The two nonlinear second-order differential equations given by equations 

(127) may be reduced to 2m first-order nonlinear equations by the 

substitutions 

^1 ' Ql     1 = 1, 2, .....m (130) 

Equations   (127) then become 

m 
E M^. <L + *    - 0 -t+1 

i-j&fl ri    i        r 

1 s: r s i 

(131) 

i r « la 

Before the numerical solution is obtained, functions $.(x), 1-1, 2, ... 

..m must be assumed. These may be trigonometric or polynomial In nature, 

or in fact, any type of function which satisfies the geometric boundary 

conditions of the problem. Once these functions are selected, the 

problem is given Initial values 

q^O) « q 

(132) 

4,(0) = q^ 

and the solutions are obtained numerically using a greatly modified 
30 

Runga-Kutta technique introduced by Rosser  and slightly modified 
•»1 

further by Skappel" . 

For a given time increment 7t, the initial values of q. and q 

are used and the ijr  functions are computed through numerical 

integration over x per iteration. This process continues until the 

required history is obtained. The order of approximation i and m roust, 

of course, be given. 
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The main merit of this proposed numerical approach is that there 

is no need to expand the assumed displacemant functions by 

multiplying out the infinite series and collecting terms in the various 

q. '».    This problem is prohibitively severe, especially in the case of 

nonlinear problems «herein infinite series must be raised to the third 

power such as evidenced in equation (129), This is precisely 

why the bulk of nonlinear structural analyses to date are limited to 

low-order approximations; in the case of the nonlinear vibrations of 

thin shells, such low-order approximations do not allow for the devel- 
18 

opment of nonperiodic motion as demonstrated by Mayers and Wrenn . It 

is also evident from equations (129) that the method is not limited to 

homogeneous beams, since the numerical process need not discern any 

type of continuity in the axial direction. 

With the use of the numerical approach proposed here, the order of the 

approximation (that is, the number of terms retained In the series) may 

be selected at will and linitel convergence tests may be run, the 

limitation being the amount and expense of computer time budgeted. 

Finally, the numerical process Itself la known to be smooth, and no 

numerical roundoff difficulties are anticipated. 

64 



Unclassified 

DOCUMCNT CONTIim. DATA - It I. 0 
I «MO« I» clMrtHMtt 

I. «IIIWMATIM« ACTIVITV fC*«« ***) 
Department of Aeronautics and Astronautics 
Stanford University 
Stanford, California  

m. mmmomr MCUIIITV CLAMincATiOM 
Unclassified 

RCPOItT TITI.S 

A NONLINEAR THEORY FOR THE BENDING, BUCKLING, AND VIBRATIONS OF 
CONICAL SHELLS 

OMC1FTI»» WOT««(lip» Wnpiif mttImtlmt— **—) 

•. AU THOM^I (FlMt m—m, atHO» 

Dror Bendavid 
Jean Mayers 

•■ RITOST OATC 

June 1970 
M. TOTAL HO. OP VAOU 

73 
M. wo. or «er» 

33 
M. COMVMACT en «HAKT MO. 

DAAJ02-68-C-0035 
k. rnojccT MO. 

Task 1F162Z04A17002 

M. emoiMATOirf KKPOHT NUMMMNSI 

USAAVLABS Technical Report 69-87 

»■ OTWW wKrooTMOWif^Ar«»»—*«»» »■«—r w mSSSS ' 
fltf««pMQ 

••. nOTMMtTIOM «TATSMCMT 

This document is subject to special export controls, and each transmittal to foreign 
governments or foreign nationals may be made only with prior approval of U.  S. 
Army Aviation Materiel Laboratories. Fort Eustis. Virginia   23604. 

• t. •um.UWMTAftV MOTS* i«. aroHKiMiMe MILITAHV ACTIVITY 

U. S.  Army Aviation Materiel Laboratoriei 
Fort Eustis. Virginia 

HLiAUTKACT 

Equations of motion and associated boundary conditions are developed for the general 
nonlinear vibrational behavior of thin conical shells.    The theory is based upon 
nonlinear strain-displacement relations deduced for a conical shell from those 
derived by Sanders for thin shells of compound curvature.    Equations for the bending, 
buckling,  ami postbuckling of conical shells under arbitrary loads are also developed 
and are shown to reduce to equations based on more simplified theories for both 
conical and circular cylindrical shells and circular flat plates.    Various solution 
approaches to the nonlinear conical shell vibration problem are examined,  and a new 
numerical method of solution is proposed and discussed. 

BO POM» MTI, I Jf M. vmeM I* 
re« AHMT was. Unclassified 

Kcuntr CteMlfiealion 



Unclassified 

Conical shell 
Nonlinear 
Bending 
Buckling 
Vibrations 
Postbuckling 
Circular Cylindrical Shell 
Circular Flat Plate 
Equations of Motion 
Variational Methods 

LINK C 

«OLC 

Unclassified 

_A 


